# **Evolution Reading Guide (Chapters 22-26)**

### **Chapter 22 Descent with Modification**

Most of this chapter is a comfortable read. Read all of it with your attention to the following points.

#### 22.1 The Darwinian Revolution

#### 22.2 Descent with Modification

- be able to define evolutionary adaptation, recognize examples, and describe examples based on your personal knowledge
- be aware that our common usage of the term "adapt" includes meanings that are NOT related to evolution (ex: I may adapt to a poor night's rest by increasing my caffeine consumption)
- what criteria must be met in order for a population to adapt, in the evolutionary sense

#### 22.3 Evolution is supported by scientific evidence

Be prepared to recognize and/or describe examples that fall into each of the categories named here.

- direct observation (the HIV video described an additional example of this)
- molecular and anatomical homology--be sure to distinguish between homology and analogy (we will do a lab on molecular homology)
- the fossil record
- biogeography

I consider this topic fairly accessible and I do not plan to spend extensive class time on these topics. Be prepared to raise questions if needed.

#### **Chapter 25 The History of Life on Earth**

The due date for this chapter is farther ahead in the calendar, but I think it makes sense to read it after Chapter 22. We will spend very little class time on these topics. You are responsible for the following:

# 25.1 Conditions on early Earth Get the gist of it.

#### 25.2 The fossil record

Get the gist of it. Be able to explain why the fossil record is necessarily incomplete.

# 25.3 Key events in life's history

- explain the term "oxygen revolution"
- review the "endosymbiont" theory and be able to explain how the first eukaryotic cells may have evolved

- be able to identify key adaptations that allowed plants to colonize land
- be able to identify key adaptations that allowed animals to colonize land
- recognize ways in which both modern plant and animal physiology give evidence of our shared ancestry with aquatic organisms

#### 25.4 The rise and fall of groups of organisms

• We will use the term "adaptive radiation" in the context of speciation. Read this closely.

#### 25.5 Major changes in body form

- This is an important application of what we studied on the topic of gene regulation. Be aware that a single mutation in a regulatory gene, particularly a gene that influences development of an organism, can have a dramatic impact on phenotype.
- We will connect this concept to macroevolution in chapter 24

#### 25.6 Evolution is not goal-oriented

• This is a critical aspect of evolutionary theory. Read closely.

#### **Chapter 23 Evolution of Populations--Microevolution**

#### 23.1 Genetic Variation

- be able to describe the role of genetic variation as raw material for the process of evolutionary change
- explain the concept of average heterozygosity: why would a population that has a low percentage of heterozygotes necessarily be less diverse for a particular trait versus a population that has a high percentage of heterozygotes?
- Distinguish between mutations that may result in new varieties of alleles and mutations that may result in new varieties of genes
- How does the life history of an organism (it's life cycle, mechanism of reproduction, and reproductive strategy) impact the rate at which variation may accumulate in a population

#### 23.2 The Hardy-Weinberg equation

- Define the terms population and gene pool
- Examine figure 23.8. Why is this Punnett square drawn with unequal dimensions for each square?
- You must memorize the conditions for Hardy-Weinberg equilibrium
- Recognize that HW equilibrium is the exception not the norm. Think of it as a baseline against which to measure evolutionary change--both adaptive and non-adaptive changes

#### 23.3 Altering allele frequencies in a population

This section is a case by case description of how a population might evolve in response to violation of a different pre-condition of HW equilibrium

• distinguish between adaptive evolution and random evolution such as that demonstrated

- by genetic drift and gene flow
- be prepared to recognize or offer examples of genetic drift
- why is genetic drift usually associated with small populations?
- why is genetic drift often deleterious to the long-term survival of a population?
- make a connection between the impact of genetic drift on species conservation efforts

#### 23.4 Only natural selection causes adaptive evolution

- you are responsible for the terminology captured in figure 23.13
- distinguish between the term natural selection and sexual selection
- why is it important for species to preserve some variation rather than permit selection to eliminate "less fit" alleles? recognize and/or describe examples of
  - dipolidy
  - o balancing selection
  - heterozygote advantage
  - frequency-dependent selection
- evolution should be thought of more like tinkering than engineering--what is the distinction?

#### **Chapter 24 The Origin of Species**

- 24.1 The biological species concept
  - be able to state and apply the biological definition of species
  - describe reproductive isolation as a potential mechanism for the formation of new species
  - Fig 24.3: Reproductive barriers
    - distinguish between pre-zygotic and post-zygotic reproductive barriers
    - For each barrier, focus on the concept illustrated by each example. It is more important to be able to use the concepts than to memorize the all of the names
  - recognize the limitations of the biological species concept
  - describe instances in which morphology, ecology, or phylogeny may be more useful frames of reference to define species

#### 24.1 Speciation can occur with or without geographic isolation

- distinguish between allopatric and sympatric isolation--read *A Review* on p. 497 <u>before</u> you read the detailed description of each type
- make a connection to adaptive radiation discussed in Chapter 25 (see Fig 25.20)
- recognize and/or provide examples of both allopatric and sympatric isolation
- recognize that some of the same factors may be at play in both allopatric and sympatric isolation--the key difference is whether or not the isolation is occurring within the same established geographic boundary
- Speciation by polyploidy is rare, but not to be ignored. Think about why this mechanism
  is limited almost exclusively to plants and even among plants has occurred very
  infrequently
- divergence between isolated populations may or may not be adaptive--the gene pools of

the two populations may accumulate differences due to either natural selection or due to random events

# 24.3 Hybrid Zones

- Fig 24.14 summarizes the text well
- Get the big picture: reproductive isolation is a process and it is subject to change.
  - If the hybrid zone reinforces reproductive isolation, then two new species are likely to emerge
  - If the hybrid zone weakens reproductive isolation, then it is likely for one species to emerge from two
  - If the hybrid zone is stabilized, two species persist with imperfect reproductive isolation

#### 24.4 Speciation can occur rapidly or slowly

- recognize patterns of divergence that represent either a punctuated pattern or a gradual pattern
- punctuated change and gradual change are not competing theories. Both mechanisms operate in different evolutionary lineages

### **Chapter 26 Phylogeny**

### 26.1 Phylogenies show evolutionary relationships

- Distinguish between classification and systematics
- The most important vocabulary that you must know with respect to phylogenetic trees (also called cladograms) is that branch points indicate a common ancestor
- It is likely that you will also encounter the terms *monophyletic*, *polyphyletic*, *and paraphyletic*. You can memorize them...or think about the words. Phylogeny has to do with common ancestry. If all of the species named in a group are recent descendents of *one* common ancestor, the group is *monophyletic*. If *more than one* ancestor defines the recent ancestry of the group, it is *polyphyletic*. If the group does not contain all descendents of a recent ancestor, the group is *paraphyletic*.

#### 26.2 Phylogenies are inferred from morphological and molecular data

 Explain why morphological comparisons alone do not always yield correct phylogenetic relationships

#### 26.3 Shared characters are used to construct phylogenetic trees

- all of the vocab used in cladistics are less important than the concepts
- Be able to identify the common branch point between any two species and thereby infer the relative relatedness (close or distant) between pairs of species
- For fig 26.11, cover up the figure (b) and practice using the character table to draw a phylogenetic tree
- note that, unless otherwise stated, a time variable is implicit along the axis of the phylogenetic tree, but you cannot assume it is drawn to scale unless that information is

- explicitly stated
- fig 26.12 shows a phylogenetic tree that displays a variable other than time along the axis
- Study fig 26.14 and 26.15 to acquaint yourself with the methods to evaluate the competing phylogenies based on the same data set

#### 26.4 An organism's evolutionary history is documented in its genome

This section takes an abrupt side-track from phylogeny. Read for the gist of it, not the
details.

#### 26.5 Molecular clocks help track evolutionary time

- A molecular clock is an estimation of the timescale of evolutionary change among living species
- The concept of a molecular clock is simple, but it relies on two unreliable assumptions
  - concept: the more differences there are between the molecular structure found in two living species (base pairs in a gene or amino acids in a protein), the more time has elapsed since the two lineages branched from their common ancestor
  - o assumption: the mutation rate is the same in different lineages
  - assumption: the fossil record comprehensively documents transitional species (radiocarbon dating of fossil specimens is necessary to establish the timescale for mutation rate)
- The reliability of molecular clocks are improved by basing them on more than one gene or more than one protein at a time

#### 26.6 New information

- be able to state the defining characteristics of each of the three domains
- it is not surprising that lively debate and controversy characterize the depiction of the history of the very earliest evolutionary events on earth; read this section for the general idea